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1. Introduction

The idea of trying to combine grand unified theories with supersymmetry breaking has been

used already in the early days of supersymmetry [1 – 4] following mainly the suggestion of

dimensional transmutation [5]. The tree order supersymmetry breaking vacuum enforced

by the O’Raifeartaigh type superpotential automatically has a flat direction, which gets

however stabilized at one loop exactly because of supersymmetry breaking corrections.

All of these models are in a perturbative regime and make use of gauge singlets. The

mediation of supersymmetry breaking to the MSSM sector is dominated by gravity, which

cannot predict (although it can fit) the strong suppression of the flavour changing neutral

currents. Later models [6 – 10] were able to get rid of gauge singlets, using nonperturbative

gauge sectors to dynamically break supersymmetry. The minima here are not global,

but local and thus metastable, although with a long enough lifetime. A typical model

has more sectors and gauge groups than usually assumed in phenomenological motivated

models like MSSM or grand unification. The results are important and promising: the

models considered are mainly realistic and quite natural (without fine-tunings), while the

mediation is gauge dominated [1, 3, 11 – 16], an important result.

What we want to explore in this work is the possibility to use as much as possible

minimal gauge groups, no singlets and perturbative physics only. The best possibility (and

the original motivation) is to use a grand unified group G (we will limit ourselves to SU(5))

without singlets and break both G and N = 1 supersymmetry spontaneously (an example

of models which break N = 2 supersymmetry spontaneously without the use of chiral

singlets is given in [18, 19]). At first glance this seems to be in contradiction with what we
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know from perturbative spontaneous supersymmetry breaking. In fact, one needs a linear

term in the superpotential, which must be a singlet, thus naively forbidding for it the use

of a gauge multiplet. However, by choosing properly the basis it is easy to get rid of the

linear term and thus have a form of the superpotential that can be directly employed in

gauge theories without any need for singlets. This will be explicitly shown in section 2.

As it will be clear, such a construction is possible only because the considered vacuum is

metastable (a recent revival of models with such vacua has been triggered by [17]). For

such reasons we will call these models of the metastable gauged O’Raifeartaigh type. It is

thus tempting to use this idea in realistic models like for example grand unified theories.

Writing a superpotential that exhibits perturbative and spontaneous supersymmetry

breaking without linear terms is only the first part of the story. The second part is to make

these metastable gauged O’Raifeartaigh models realistic in the context of grand unified

theories. The minimal SU(5) model will be explicitly presented in section 3, together with

the main virtues and drawbacks. The virtues are the fact that two adjoint fields suffice to

break both supersymmetry and SU(5) gauge symmetry spontaneously. We will show that

the model is locally stable in some range of the vevs. One of the vevs is undetermined

at tree order, and we will check that it can exhibit a metastable local minimum at one

loop. The renormalizable superpotential has two terms only, a form which is enforced by

a global U(1)R symmetry. The drawback of this simple example is the presence of light

states, which makes it unrealistic. Possible corrections of this minimal scenario and the

role of supergravity will be described in section 4. We will present explicitly three realistic

cases in which these unwanted light states are not present: 1) the nonrenormalizable model

with two 24, section 4.1, eq. (4.1); 2) the renormalizable model with four 24, section 4.2,

eq. (4.12); 3) the renormalizable model with two 24 and one 75, section 4.3, eq. (4.14).

Finally, some general remarks and a list of open problems (among which the suggestion to

use this type of models in hybrid inflation without singlets) to be discussed in more detail

elsewhere will be given in section 5.

2. From singlets to gauge multiplets

We start with the simplest model which exhibits metastable supersymmetry breaking fol-

lowing the general analysis [20]

W = S
(

ξ + λφ̃2
)

. (2.1)

It exhibits a tree level local minimum at

〈φ̃〉 = 0 , S undetermined , (2.2)

providing

|〈S〉| ≥
∣

∣

∣

∣

ξ

2λ

∣

∣

∣

∣

1/2

. (2.3)

Such a superpotential cannot be directly written in terms of gauge multiplets, due to the

existence of the linear term in S. It is however simple to get rid of it by redefining

φ̃ = φ − 〈φ〉 , (2.4)
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and choosing 〈φ〉 such that

ξ + λ〈φ〉2 = 0 . (2.5)

We end up with

W = µφS + λφ2S , (2.6)

i.e., no linear terms, and with a local minimum at

〈φ〉 = − µ

2λ
, S undetermined , (2.7)

provided it is in the allowed range

|〈S〉| ≥ |〈φ〉|√
2

. (2.8)

This shows that one could start with eq. (2.6), and since there are no linear terms in

it, no singlet is really needed: both S and φ in (2.6) can be part of a gauge multiplet

of a gauge group G, which vevs 〈S〉 and 〈φ〉 break G spontaneously to a subgroup H.

In the next section we will give an SU(5) example with two adjoints, both breaking to

SU(3)×SU(2)×U(1).

3. The simplest example: two SU(5) adjoints

Using the results in the previous section, we can immediately write down a candidate for

a metastable gauged O’Raifeartaigh SU(5) model:

W = µTrΣ1Σ2 + λTrΣ2
1Σ2 . (3.1)

We expand the adjoints Σi as

Σi =

(

Oi + 2σi/
√

30 Xi

X̄i Ti − 3σi/
√

30

)

, (3.2)

where σi are the Standard Model (SM) singlets, Oi the color octets (8, 1; 0), Ti the weak

triplets (1, 3; 0), and Xi, X̄ithe color triplet, weak doublets (3, 2;±5/3). The vev v1 = 〈σ1〉
is obtained from

〈

∂W

∂σ1

〉

= 0 → v1 =

√
30

2

µ

λ
, (3.3)

while supersymmetry breaking is signaled by a nonzero F term:

F ∗
2 ≡

〈

∂W

∂σ2

〉

=
λv2

1√
30

. (3.4)

The other vev, v2 (= 〈σ2〉), is undetermined at tree order, i.e. it is a flat direction. It will

be stabilized by nontrivial 1-loop corrections to the Kähler potential, which at tree order

is

K0 = TrΣ†
iΣi . (3.5)

Since the vevs of the adjoints are diagonal, the D-terms are vanishing.
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We have to check two things.

First, that the above model does not contain tachyons. That the singlet has non-

negative mass square at least for some choices of the vevs is expected from (2.8). What

remains to be checked are the masses of all other SM multiplets. One pair of the bosons

in Xi, X̄i will provide the would-be Nambu-Goldstone bosons (mainly from Σ2), while the

other pair (mainly from Σ1) will acquire a mass proportional to v2, so we do not need to

worry about them.

After SU(5) breaking, the singlet in Σ1 gets a supersymmetric mass

Mσ1
=

1√
30

2λv2 (3.6)

while the non-singlet mass matrices have in general the form

M =
λ√
30

(

c2v2 c1v1

c1v1 0

)

(3.7)

with c1 = 9, c2 = 6 for color octets, and c1 = 6, c2 = 9 for weak triplets. The supersymmetry

breaking mass terms in the Lagrangian are

δL =
λF2√

30

(

−σ2
1 + 2O2

1 − 3T 2
1 − X1X̄1

)

+ h.c. (3.8)

One can now easily find out that there are no tachyonic states if the SM singlet scalar

σ1 is not tachyonic, which is true provided the analogue of (2.8) is satisfied:
√

2 |v2| ≥ |v1| (3.9)

The second thing we need to check is whether the flat direction σ2 gets stabilized at 1-

loop following the lines of [5]. All is needed is to check what happens with the wavefunction

of the field that breaks supersymmetry (σ2) [7]. In fact the potential at one loop gets

corrected with respect to the tree order one by exactly the wavefunction renormalization

(neglecting small finite corrections) through

V (σ2) ≈
|F2|2

Z2(|σ2|)
, (3.10)

where F2 can be read from (3.4) and Z2 is the wavefunction renormalization at one loop.

Obviously the minimum of the potential comes from the maximum of Z2. At this point

one can use the usual rules to write down the renormalization group equations - RGE’s (a

useful and concise set of rules can be found for example in [15]). For the particle spectrum

we take on top of the two adjoints just the minimal set of three generations of matter

fields and one pair of 5H , 5H (the results can be easily generalized for more Higgs and/or

messenger fields). We obtain
(

τ ≡ 1

8π2 ln
(

µ
MGUT

))

the following system

d

dτ
g−2
5 = −2 , (3.11)

d

dτ
ln λ2 = −30g2

5 + 21λ2 , (3.12)

d

dτ
ln Z2 = 10g2

5 − 21

5
λ2 . (3.13)
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We have assumed that the couplings between the fundamental and adjoint Higgses are

negligible1

The extremum of Z2 fixes one parameter of the superpotential at the minimum

λ2 =
50

21
g2
5 . (3.14)

That the extremum of the potential is indeed a minimum can be seen from the nega-

tivity of the second derivative at the extremum

1

Z2

d2Z2

dτ2
= −180g4

5 . (3.15)

The minimum (and thus the GUT scale v2) is determined by the equivalence (3.14).

We have thus checked that the Higgs sector (3.1) can indeed break both SU(5) to the

SM gauge group and supersymmetry. Also, the original parameters of the model (µ, λ)

can be changed for the physical ones (F , MGUT). Notice that all this has been achieved

without any fine tuning of the model parameters. The gauge coupling was crucial in this

game: the limit of gauge singlets would confirm the observation of [20] that metastable

supersymmetry breaking vacua exist only when all values of the flat directions are allowed

at tree order. In fact, for g5 → 0 the one-loop correction would first push v2 towards the

origin, violating the bound (3.9) and eventually finishing in one of the two supersymmetry

preserving vacua v1 = 0 or v1 =
√

30µ/λ (both with v2 = 0).

The superpotential (3.1) is the most general renormalizable superpotential for two

SU(5) adjoints that satisfies a global U(1)R symmetry, under which Σ1 is neutral and

Σ2 has charge 2. This symmetry is spontaneously broken by the v2 vev and has thus

at the perturbative level an exact Nambu-Goldstone boson (σ2). The R-symmetry must

be eventually explicitly broken by supergravity corrections that cancel the cosmological

constant [21], which will give a nonzero mass also to this pseudo-Nambu-Goldstone boson.

To summarize: SU(5) is broken at v2, supersymmetry at v1. The adjoint Σ1 could in

principle be used as a messenger.

The model is simple and predictive, indeed too predictive, leading to inescapable prob-

lems. The most pressing one is that either the supersymmetry breaking scale is comparable

to the GUT scale or there are light weak triplets and colour octets mainly from Σ2. In fact

from (3.7) we can see that triplets and octets can have order MGUT mass only if v1 = O(v2),

i.e. when
√

F ≈ v1 ≈ v2 ≈ MGUT. Since the most obvious candidate for the messengers are

the MSSM multiplets in Σ1, the typical soft mass is only loop (i.e. ≈ 10−2) suppressed with

respect to the triplet and octet masses ≈ F/MGUT. Keeping v1 as a free parameter one

is still able to unify the gauge couplings, but at a too high scale slightly above 1019 GeV,

with the sfermion and gaugino masses around 105 GeV. Even if one accepted such a high

scale, the calculation itself would turn out to be inconsistent, because MGUT ∼> 1019 GeV

would make supergravity corrections to the soft masses dominant. Taking this into account

consistently changes very little, making such a model unappealing. In the next section, we

describe more realistic scenarios.

1This assumption is consistent for example in the simplest of all cases, i.e. W = 5̄H(yΣ1 + M)5H .
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4. More realistic options

We see that the problem arises because the same scale that determines the light SM mul-

tiplets (v1) specifies also the supersymmetry breaking F ∝ v2
1 and thus cannot be at the

same time large and small. In order to provide for a different scale, one can resort basically

to two possibilities: adding non-renormalizable interactions while keeping the field content

minimal, or adding more fields and keep renormalizability. We will find three different re-

alistic models, described in sections 4.1, 4.2 and 4.3 respectively. All three of them possess

a global U(1)R symmetry, broken by the vacuum expectation value of the GUT field that

gets a nonzero F term. This is in accordance with the general theorem [22].

4.1 Adding non-renormalizable operators

The first option is to keep the number of adjoints at a minimum but increase the number

of interaction terms, i.e. allow for non-renormalizable operators. Using higher powers in

Σ1 is still consistent with the U(1)R symmetry. The simplest correction

W = Tr
[

Σ2

(

µΣ1 + λΣ2
1 +

α1

M
Σ3

1 +
α2

M
Tr
(

Σ2
1

)

Σ1

)]

(4.1)

is already enough: one can have large enough vev v1 ≈ v2 but with F arbitrarily low (with

a proper fine-tuning of the model parameters), as we now show.

From the equation of motion for σ1, i.e. ∂W/∂σ1 = 0 we get

µ =
2λ√
30

− 3

M

(

7

30
alpha1 + α2

)

v2
1 , (4.2)

while the second equation F ∗ = ∂W/∂σ2 = 0 gives

F ∗ = v2
1

[

λ√
30

− 2

M

(

7

30
α1 + α2

)

v1

]

. (4.3)

This solution has no tachyonic states provided

2

∣

∣

∣

∣

v2

v1

∣

∣

∣

∣

2 ∣
∣

∣

∣

F ∗

v2
1

−
(

7

30
α1 + α2

)

v1

M

∣

∣

∣

∣

≥
∣

∣

∣

∣

F ∗

v2
1

∣

∣

∣

∣

. (4.4)

For small enough F this is always the case, so we do not need to worry anymore,

allowing large values of v1. Assuming all parameters real for simplicity we get for the

determinants of the octet and triplet mass matrices

(det O)1/2 = v1

[

6
F

v2
1

+

(

75

30
α1 + 10α2

)

v1

M

]

, (4.5)

(det T )1/2 = v1

[

4
F

v2
1

+

(

50

30
α1 + 10α2

)

v1

M

]

. (4.6)

They depend very mildly on the supersymmetry breaking order parameter F . In the

limit F → 0 one has for v1 ≈ v2 ≈ MGUT the two eigenvalues of the order of M2
GUT

/M

(barring accidental cancellations). So, although there are intermediate states, they are

much less harmful than the ones in the previous examples.
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There are various comments in order.

First, notice that in this example there is a fine-tuning needed to split the scales v1 (that

we want to be large in order to avoid too light states) and
√

F (that we want to be small

enough, possibly even around 100 TeV). This is seen for example from the constraint (4.3).

Another important point is that the cutoff M cannot be too large for two reasons:

first, eq. (4.3) tells us that λ can be order 1 as required by (3.14) only for mild hierarchies

MGUT/M ; second, one does not want too light intermediate states of mass M2
GUT

/M .

Finally, one could worry that the new operators introduced could influence the RGE’s

used to get the minimum of the effective potential. This is not the case, since at one loop the

1/M suppressed operators do not contribute to the renormalization of the wave-functions.

Let us now check the gauge coupling unification constraints. The spectrum is the

following: at ΛSUSY we have the MSSM superpartners (and the second Higgs), at M2
GUT

/M

we have two colour octets, two weak triplets and a pair of X, X̄ , i.e. one colour octet, one

weak triplet and a full SU(5) adjoint. This is completely analogous to the case described

in [23] with the result that the final GUT scale is increased with respect to the usual MSSM

case only by a factor 2, if we assume that the cutoff M is 10 times the GUT scale. Due to

the increase of MGUT and the appearence of an extra adjoint multiplet at the intermediate

scale, the unification gauge coupling αU increases by about 10% with respect to the usual

MSSM case.

4.2 Adding more adjoints

If one wishes to stick to renormalizable models, the simplest idea is to generalize the

model (3.1) to something like

W = Tr [ΣN+1 (µiΣi + λijΣiΣj)] , (4.7)

where now i goes from 1 to some integer N . Notice that λij in general does not need to be

symmetric, so in general a SU(5) invariant unitary rotation cannot diagonalize λ. For our

purpose it is however enough to concentrate just on the diagonal elements of ΣN+1 and

Σi, so that these matrices commute and only the symmetric combination λij + λji enters,

which can be diagonalized. So we obtain in complete generality the N replica of (3.1), i.e.

W = Tr
[

ΣN+1

(

µiΣi + λiΣ
2
i

)]

. (4.8)

Repeating the exercise in section 3, we get

vi =

√
30

2

µi

λi
; FN+1 =

N
∑

i=1

λi√
30

v2
i . (4.9)

In principle it could be possible to have large vi but small FN+1 (by appropriate fine-

tuning of the terms in the sum), but this cannot help, as we shall now see. The mass

matrices that generalize (3.7) are now (N + 1) × (N + 1) dimensional, and for the triplet

and octet have the form

M =
λi√
30

(

c2,iδijv2 c1,ivi

c1,ivi 0

)

, (4.10)
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while the determinant is

det (M) = λ1 . . . λN ×
N
∑

i=1

c2,ic
2
1,iλiv

2
i . (4.11)

Since all the fields are adjoints, the Clebsch-Gordon coefficients c1,i, c2,i are the same

for each SM state, and therefore the sum above is proportional to FN+1: in the limit

FN+1 ≪ v2
N+1

we get N masses of order vN+1 and one of order FN+1/vN+1. Adding more

adjoints in this way cannot give mass to the light colour octets and weak triplets.

This result is a consequence of the superpotential chosen, but there is at least another

possibility. Namely, since any nonrenormalizable Lagrangian can be in principle obtained

from a renormalizable one by integrating out heavy degrees of freedom, one could use

directly the renormalizable potential that gives (4.1). It turns out that, due to the linearity

in Σ2, not one but two additional adjoints (Ωi) are needed. The following ansatz

W = −MTr (Ω1Ω2) + Tr [Ω1 (µ2Σ2 + λ2Σ2Σ1)]

+Tr
[

Ω2

(

µ1Σ1 + λ1Σ
2
1

)]

(4.12)

will do the job. One can show that this model has the right properties also in its renormal-

izable version (without integrating out Ω1,2) for all the mass terms and couplings of order

1. Notice that there is still a U(1)R symmetry, under which Σ1 and Ω1 have charge 0 and

Σ2 and Ω2 have charge 2. The model could presumably be generalized to

W = Tr [Σ2 fΣ(Σ1,Ω1)] + Tr [Ω2 fΩ(Σ1,Ω1)] . (4.13)

We will not push this model any further.

4.3 Adding different representations

There is a further possibility to maintain renormalizability. The point is that what pre-

cludes to have really different mass matrices of the MSSM adjoints and the singlet is the

absence of enough terms in the superpotential. In other words, there is only one type of

trilinear invariants for the adjoint fields (although for three different adjoints there are ac-

tually two such invariants, they are equivalent for diagonal elements that commute). So one

can try to use different SU(5) representations, and the smallest one for this purpose to add

to two adjoints is the 75. One can write the most general renormalizable superpotential as

W = µTr(Σ1Σ2) + λ1Tr(Σ2
1Σ2)

+λ2Tr(Φ2Σ2) + ηTr(ΦΣ1Σ2) , (4.14)

where Φ is the 75. The supersymmetry breaking is achieved for the SM singlet vevs

〈Φ〉 = −5
√

15η

16λ2

v1 , (4.15)

〈Σ1〉 ≡ v1 =

√

15

2

λ2ξ

λ1λ2 − 125

64
η2

. (4.16)
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We get now

F ∗
2 =

1√
30λ2

(

λ1λ2 −
125

64
η2

)

v2
1 , (4.17)

which can be fine-tuned to any desired value by fixing the expression in brackets. All one

has to do now is to make sure that there are no light states, with masses proportional to

the supersymmetry breaking parameter F2.

There are seven different states in all. Three of these are only present in 75, namely

the (8, 3; 0), the (3, 1;±10/3) and the (6, 2;±5/3). It is evident from the superpotential

that they get masses proportional to λ2v2 since they do not mix. The X, X̄ provide the

Nambu-Goldstone bosons as before. For the other two, namely the color octets and weak

triplets, the determinant of the supersymmetric mass matrices are

detO = −
√

5v2v
2
1√

6λ2

(4.18)

×
(

16225

18432
η4 − 101

√
5

12
√

6
η2λ2

F2

v2
1

+
84

5
λ2

2

F2
2

v4
1

)

detT = v2
1

(

15
√

30

32

η2

λ2

− 4
F2

v2
1

)2

(4.19)

As can be seen, there are no light states left. Thus, this can be considered the minimal

renormalizable version.

4.4 Supergravity corrections

In supergravity it is possible to spontaneously break supersymmetry and SU(5) with just

one adjoint [24], although with considerable fine-tuning. In this paper we want to take

the opposite limit, i.e. to avoid the domination of terms suppressed by the Planck mass.

However, supergravity is there, if nothing else, to cancel the cosmological constant. Here

we will shortly check what supergravity does to our models. We will limit ourselves to

the most delicate aspects of the above scenario, i.e. the stability of the minimum found

through the RGE’s and to the R-axion mass.

Consider the nonrenormalizable model with two adjoints. Although the model has

a cutoff lower than the Planck scale, we assume that the UV completion at this cutoff,

valid all the way to MP l, maintains at least approximately the form of the SM singlets’

superpotential

W = F (φi)σ2 + W0(φi) , (4.20)

where F (〈φi〉) ≡ F sets the scale of supersymmetry breaking and W0(〈φi〉) ≡ W0 ≈ FMP l

fine-tunes the cosmological constant to zero. Assuming that all vevs are smaller than MP l

the typical supergravity contribution to the potential for σ2 is schematically F 2(σ2/MP l)
n

and so only the lowest n’s are relevant. The correction to the mass is

∆m2
σ2

≈ 4

3

(

F

MP l

)2

, (4.21)
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to be compared with the mass found in the global supersymmetric case. This can be easily

read off from (3.10) and (3.15)

m2
σ2

≈ 360
(αU

4π

)2
(

F

MGUT

)2

. (4.22)

We see that the mass square from the solution (4.22) in the global supersymmetry case is

numerically (for MGUT ≈ 4.1016 GeV, MP l ≈ 2.1018 GeV, αU ≈ 1/20) 15 times or so bigger

than the supergravity contribution (4.21). So, the mass is stable.

There is however a new linear contribution and this represents the main danger. The

main part of the potential can be written schematically as the sum of the leading gauge

contribution and the supergravity corrections

V ≈ m2
σ2

(σ2 − M0
GUT)2 +

F 2

MP l
σ2 + . . . (4.23)

In the limit MP l → ∞ we had M0
GUT

= 〈σ2〉 ≡ MGUT, but now the true minimum

gets shifted as (we omit numbers of order one)

MGUT = M0
GUT +

F 2

m2
σ2

MP l
. (4.24)

The two contributions are of the same order and the supergravity one could even

dominate. To settle it one would need to perform a more precise calculation. One can

however notice that the value M0
GUT

was defined as the scale, at which the equality (3.14)

is satisfied. But then it is enough to shift this scale to a different value, so that the final

MGUT (4.24) is what we would like it to be.

Another issue is the R-axion mass. The constraint of a vanishing cosmological constant

requires a constant term of order FMP l in the superpotential. This term explicitly breaks

the U(1) R-symmetry. The pseudo R-axion gets thus a non-vanishing mass of order [21]

m2
a ≈ F 2

MGUTMP l
. (4.25)

Whether the model is cosmologically safe or not depends on the value of F . A weak

scale R-axion mass is dangerous, for similar reasons as moduli, see for example [25 – 27]

for possible solutions in this case. In the opposite case of small F the R-axion mass is

harmless.

A short comment is due on D-terms. It is known, that in general N = 1 D = 4

supergravity, the D and F terms are connected [28, 29]. This means, that if D-terms

are non-zero, they are related to F -terms. In our case the adjoints are diagonal, so their

D-terms are still zero, similar to the global limit.

5. Conclusions

We have shown that it is possible to construct realistic superpotentials that break per-

turbatively both supersymmetry and a gauge symmetry without using singlets. This is
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possible only because the minima considered were metastable. For such models there is

no reason to introduce extra gauge sectors, which dynamically break supersymmetry. One

can thus study just simple gauge groups, a particularly appealing situation in case of grand

unified theories. The price to pay is that extra states need to be introduced.

We found three different realistic SU(5) examples:

1. nonrenormalizable model with two 24, section 4.1, eq. (4.1);

2. renormalizable model with four 24, section 4.2, eq. (4.12);

3. renormalizable model with two 24 and one 75, section 4.3, eq. (4.14).

All three of them have a spontaneously broken U(1)R global symmetry.

There are many issues not touched in this paper, to be addressed in subsequent work.

Let us mention some of them.

The doublet-triplet problem. In the minimal case of the renormalizable model with

two adjoints the doublets and triplets of a single pair of 5H and 5̄H cannot be split enough

even with fine tuning. In fact, Σ2 should not couple to the fundamentals, because its F

term destabilizes the weak scale. On the other side Σ1 has a too small vev (of the order

of
√

F ) to split enough the doublets and triplets. It is thus reassuring that in the realistic

versions this problem disappears, since now v1 can be of the order of the GUT scale.

In models with 75 one can use the missing partner mechanism [30]. Such a model

has quite some number of huge representations (two 24H , one 75H and one pair of 50H

and 50H), but it should be stressed that no fine-tuning is needed, except the obvious one

that creates the hierarchy
√

F ≪ MGUT, needed in all known perturbative supersymmetry

breaking models without light states.

Mediation of supersymmetry breaking. The obvious mediators in all these type of

models are the heavy gauge bosons and the adjoints. They can dominate over gravity only

for relatively low MGUT, not much higher than the usual in MSSM. The large number of

fields can help for this purpose. Notice that the potential problem of negative soft mass

squared is not necessarily there due to the subsequent running, as shown recently in [31].

Other possible contributions need the introduction of extra (possibly intermediate scale)

states, like the usual extra pairs of SU(5) fundamental and anti-fundamentals, or a pair of

15H and 15H that can be used also for the neutrino masses [32].

Non-perturbative contributions. We have assumed that the perturbative part of the

superpotential dominates. One could ask, how can the non-perturbative contributions

influence the picture. Can one calculate them? The models considered are realistic and

thus necessarily complicated enough to make the usual techniques (use of holomorphicity,

symmetries, etc) hard and probably non conclusive. Notice that none of the models we

presented is ultraviolet free. The best one can do without further work is to make the most

sensitive part of our mechanism, i.e. the presence of a U(1)R symmetry, independent on the

quantum non-perturbative corrections. This can be guaranteed by making the U(1)R global

symmetry non-anomalous. Of course this depends on the model chosen. For example, in

– 11 –
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the non-renormalizable model with two adjoints, one needs to add to the usual spectrum

(two adjoint Higgses, a pair of fundamental Higgses and three generations of 10F and 5̄F

matter) also two pairs of (5i+5̄i) chiral multiplets with vanishing R-charge (enforced for

example by a term λi5̄iΣ25i in the superpotential). A general treatment of this issue is

very interesting, but beyond the scope of this paper.

Vacuum metastability. We have assumed throughout the paper that the vacuum life-

time is longer than the age of the universe. This can be checked either with an explicit

calculation using the full 1-loop effective potential, or estimated as it is done in [7]. Using

the constraint (4.4) and the method in [7] one finds for such a bounce action an approxi-

mate value of SB ≈ 2π2M2
GUT

/|F |, which is much larger than the required value of ≈ 500

needed for the lifetime to be longer than the age of the universe.

Different gauge groups. We have limited ourselves to the prototype example of a SU(5)

grand unified theory. For many aspects the SO(10) GUT is more successful. Unfortunately

the minimal renormalizable version [33] cannot break at the same time the gauge group

and supersymmetry, the reason being the absence of a flat direction. An extra problem

in such nonminimal groups is the need for breaking rank, which typically needs an extra

fine-tuning.

A special role can be played here by partial unified groups, like the Pati-Salam or

the Left-Right group. Being possible at lower scales without being necessarily worried

about proton decay constraints, they can automatically give a low enough supersymmetry

breaking scale without any fine-tuning. The minimal model with two fields can work in both

cases, however, again an additional sector (and additional fine-tuning) is needed in order

to break rank. Of course the whole motivation for supersymmetry is here less pronounced:

no hierarchy problem because of little or no hierarchy, no one-step unification because of

intermediate scales.

Inflation without singlets. It is interesting that these type of models give possible

candidates for a non-singlet (although still MSSM singlet) inflaton. Apart from few excep-

tions (for example [34] in MSSM and [35] in a GUT) this would be one of the very few

examples of such inflatons on the market. The simplest model (3.1) is very similar to the

prototype model of F-term hybrid inflation [36]. If one is not too ambitious and does not

pretend that the same model describes also supersymmetry breaking, this simple model

could in principle work. In fact, in order to get rid of the unwanted light states, one can

think that the final state after inflation is in the true minimum, in which both adjoints

become heavy. Preliminary results seem to confirm that inflation can indeed take place,

in a similar manner as in the case with singlets introduced in [36]. For example, one can

calculate the derivatives of the 1-loop potential and find out that the usual requirements

for inflation to happen are satisfied. What would be particularly interesting is to see if

there are any differences in predictions with respect to the case with a singlet. This work

is in progress and a detailed analysis will be presented elsewhere.
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